Generation of all rational numbers in (0,1).
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Functions f(x) = 1 +x ——,g(x) = =——— are defined on (0, 1). Is it possible
starting from % and using only operatlonsf(x),g(x) to obtain any rational number
in (0,1) ?.

Solution by Arkady Alt, San Jose, California, USA.
1. Let g,(x) be defined recursively by go(x) := x and g,.1(x) = g(g.(x)),n € NU{0}.
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Thus, by Ml proved that g,(x) = T X —.n € NU {0}.
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We will prove by MI that any fraction % € (0,1),m > 2 also can be obtained

using only operations f{(x), g(x).

Taking fraction 2 as Base of Ml and for any natural n > 3, assuming
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that any fraction % where 2 < p < g < n can be obtained starting

from %using only operations f{(x),g(x), we will prove that any irreducible
fraction% with 2 < m < n can be obtained from %using only operations
flx),g(x) as well.

Indeed, since =k+ k= 1re{l,.. — 1} (r # 0 because ged(m,n) = 1)
then ZIL =

I =g (f(w>>,where r by supposition om MI can
m
be obtained using only operations f{x), g(x).

Another way, using continuous fractions:
Let /1,(x) = gu1(flx)) = ——=,n € N. Also for any n € N\{1} we have
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Let % be any fraction in (0,1), thatis 1 < a < b.
_ a _ 1.
If a = 1then b gb—2<2>,

If a > 1 then we have < = [0;n1,..., nil = L =
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