Generation of all rational numbers in (0, 1).

https://www.linkedin.com/feed/update/urn:li:activity:6949237860680048640? utm source=linkedin share&utm medium=member desktop web Functions $f(x) = \frac{1}{1+x}$, $g(x) = \frac{x}{1+x}$ are defined on (0,1). Is it possible starting from $\frac{1}{2}$ and using only operations f(x), g(x) to obtain any rational number in (0,1)?.

Solution by Arkady Alt, San Jose, California, USA.

1. Let $g_n(x)$ be defined recursively by $g_0(x) := x$ and $g_{n+1}(x) = g(g_n(x)), n \in \mathbb{N} \cup \{0\}$. Then $g_1(x) = g(x), g_2(x) = \frac{g(x)}{1+g(x)} = \frac{\frac{x}{1+x}}{1+\frac{x}{1+x}} = \frac{x}{1+2x}$ and for any $n \in \mathbb{N}$, assuming $g_n(x) = \frac{x}{1+nx}$ we obtain $g_{n+1}(x) = \frac{\frac{x}{1+nx}}{1+\frac{x}{1+x}} = \frac{x}{1+(n+1)x}$. Thus, by MI proved that $g_n(x) = \frac{x}{1+nx}, n \in \mathbb{N} \cup \{0\}$. Hence, $g_n(f(x)) = \frac{f(x)}{1 + nf(x)} = \frac{1}{1 + x} \frac{1}{1 + x} = \frac{1}{x + n + 1}, n \in \mathbb{N} \cup \{0\}.$ In particular we have $g_0(f(\frac{1}{2})) = \frac{1}{\frac{1}{2} + 0 + 1} = \frac{2}{3}, g_1(f(\frac{1}{2})) = \frac{1}{\frac{1}{2} + 1 + 1} = \frac{2}{5}.$ Also, note that $g_1\left(\frac{1}{2}\right) = \frac{\frac{1}{2}}{1+1\cdot\frac{1}{2}} = \frac{1}{3}, g_2\left(\frac{1}{2}\right) = \frac{\frac{1}{2}}{1+2\cdot\frac{1}{2}} = \frac{1}{4}$ and in general for any $n \ge 3$ we have $g_{n-2}\left(\frac{1}{2}\right) = \frac{\frac{1}{2}}{1 + (n-2) \cdot \frac{1}{2}} = \frac{1}{n}$. We will prove by MI that any fraction $\frac{m}{n} \in (0,1), m \ge 2$ also can be obtained using only operations f(x), g(x). Taking fraction $\frac{2}{3}$ as Base of MI and for any natural $n \ge 3$, assuming that any fraction $\frac{p}{q}$ where $2 \le p < q < n$ can be obtained starting from $\frac{1}{2}$ using only operations f(x), g(x), we will prove that any irreducible fraction $\frac{m}{n}$ with $2 \le m < n$ can be obtained from $\frac{1}{2}$ using only operations f(x),g(x) as well. Indeed, since $\frac{n}{m} = k + \frac{r}{m}, k \ge 1, r \in \{1, \dots, m-1\}$ $(r \ne 0 \text{ because } gcd(m, n) = 1)$ then $\frac{m}{n} = \frac{1}{\frac{r}{m} + k} = g_{k-1}(f(\frac{r}{m}))$, where $\frac{r}{m}$ by supposition om MI can be obtained using only operations f(x), g(x).

Another way, using continuous fractions:

Let $h_n(x) := g_{n-1}(f(x)) = \frac{1}{n+x}, n \in \mathbb{N}$. Also for any $n \in \mathbb{N} \setminus \{1\}$ we have

$$g_{n-2}\left(\frac{1}{2}\right) = \frac{1/2}{1 + (n-2) \cdot \frac{1}{2}} = \frac{1}{n}.$$

Let $\frac{a}{b}$ be any fraction in (0,1), that is $1 \le a < b$.
If $a = 1$ then $\frac{a}{b} = g_{b-2}\left(\frac{1}{2}\right)$;
If $a > 1$ then we have $\frac{a}{b} = [0; n_1, \dots, n_k] = \frac{1}{n_1 + \frac{1}{n_2 + \cdots + \frac{1}{n_k}}} = (h_{n_1} \circ h_{n_2} \circ \dots \circ h_{n_{k-1}} \circ g_{n_k-2})\left(\frac{1}{2}\right).$
For examples

$$\frac{13}{29} = \frac{1}{2 + \frac{1}{(13/3)}} = \frac{1}{2 + \frac{1}{4 + \frac{1}{3}}} = h_2 \left(h_4 \left(g_1 \left(\frac{1}{2} \right) \right) \right).$$

or $\frac{5}{13} = g \left(f_3 \left(\frac{1}{2} \right) \right)$, that is $\frac{5}{13} = g \left(f \left(f \left(\frac{1}{2} \right) \right) \right) = (g \circ f \circ f \circ f) \left(\frac{1}{2} \right).$