Generation of all rational numbers in $(0, 1)$.

https://www.linkedin.com/feed/update/urn:li:activity:6949237860680048640? utm_source=linkedin_share&utm_medium=member_desktop_web Functions $f(x) = \frac{1}{1+x}$, $g(x) = \frac{x}{1+x}$ are defined on $(0,1)$. Is it possible starting from $\frac{1}{2}$ and using only operations $f(x),g(x)$ to obtain any rational number in $(0, 1)$?.

Solution by Arkady Alt, San Jose, California, USA.

1. Let $g_n(x)$ be defined recursively by $g_0(x) := x$ and $g_{n+1}(x) = g(g_n(x)), n \in \mathbb{N} \cup \{0\}$. Then $g_1(x) = g(x), g_2(x) = \frac{g(x)}{1 + g(x)} =$ *x* $1 + x$ $\frac{x}{1 + \frac{x}{1 + x}}$ $=\frac{x}{1+2x}$ and for any $n \in \mathbb{N}$, assuming $g_n(x) = \frac{x}{1 + nx}$ we obtain $g_{n+1}(x) =$ *x* $1 + nx$ $\frac{x}{1 + \frac{x}{1 + nx}}$ $=\frac{x}{1 + (n+1)x}$. Thus, by MI proved that $g_n(x) = \frac{x}{1 + nx}, n \in \mathbb{N} \cup \{0\}.$ Hence, $g_n(f(x)) = \frac{f(x)}{1 + nf(x)} =$ 1 $1 + x$ $\frac{n}{1+x}$ $=\frac{1}{x+n+1}, n \in \mathbb{N} \cup \{0\}.$ In particular we have $g_0\Big(f\Big(\frac{1}{2}\Big)\Big)=\frac{1}{\frac{1}{1+\theta}}$ $\frac{1}{\frac{1}{2}+0+1} = \frac{2}{3}, g_1(f(\frac{1}{2})) = \frac{1}{\frac{1}{2}+1}$ $\frac{1}{\frac{1}{2}+1+1} = \frac{2}{5}.$ Also, note that $g_1\left(\frac{1}{2}\right)$ = 1 2 $1 + 1 \cdot \frac{1}{2}$ $=\frac{1}{3}, g_2(\frac{1}{2})$ 1 2 $1 + 2 \cdot \frac{1}{2}$ $=$ $\frac{1}{4}$ and in general for any $n \geq 3$ we have $g_{n-2}\left(\frac{1}{2}\right)$ = 1 2 $1 + (n-2) \cdot \frac{1}{2}$ $=\frac{1}{n}$. We will prove by MI that any fraction $\frac{m}{n} \in (0,1)$, $m \geq 2$ also can be obtained using only operations $f(x)$, $g(x)$. Taking fraction $\frac{2}{3}$ as Base of MI and for any natural $n\geq 3,$ assuming that any fraction $\frac{p}{q}$ where $2 \leq p < q < n$ can be obtained starting from $\frac{1}{2}$ using only operations $f(x),g(x),$ we will prove that any irreducible fraction $\frac{m}{n}$ with $2 \leq m < n$ can be obtained from $\frac{1}{2}$ using only operations $f(x)$ *,g* (x) as well. Indeed, since $\frac{n}{m} = k + \frac{r}{m}$, $k \ge 1$, $r \in \{1, ..., m-1\}$ ($r \ne 0$ because $gcd(m, n) = 1$) then $\frac{m}{n} = \frac{1}{|r|}$ $\frac{1}{m}$ *i k* $= g_{k-1} \left(f\left(\frac{r}{m}\right) \right)$, where $\frac{r}{m}$ by supposition om MI can be obtained using only operations $f(x)$, $g(x)$.

Another way, using continuous fractions:

Let $h_n(x) := g_{n-1}(f(x)) = \frac{1}{n+x}, n \in \mathbb{N}$. Also for any $n \in \mathbb{N} \setminus \{1\}$ we have

$$
g_{n-2}\left(\frac{1}{2}\right) = \frac{1/2}{1 + (n-2) \cdot \frac{1}{2}} = \frac{1}{n}.
$$

Let $\frac{a}{b}$ be any fraction in (0, 1), that is $1 \le a < b$.
If $a = 1$ then $\frac{a}{b} = g_{b-2}\left(\frac{1}{2}\right)$;
If $a > 1$ then we have $\frac{a}{b} = [0; n_1, ..., n_k] = \frac{1}{n_1 + \frac{1}{n_2 + \dots + \frac{1}{n_k}}}$
 $(h_{n_1} \circ h_{n_2} \circ ... \circ h_{n_{k-1}} \circ g_{n_{k-2}})\left(\frac{1}{2}\right).$

For examples

$$
\frac{13}{29} = \frac{1}{2 + \frac{1}{(13/3)}} = \frac{1}{2 + \frac{1}{4 + \frac{1}{3}}} = h_2\left(h_4\left(g_1\left(\frac{1}{2}\right)\right)\right).
$$
\nor

\n
$$
\frac{5}{13} = g\left(f_3\left(\frac{1}{2}\right)\right), \text{that is } \frac{5}{13} = g\left(f\left(f\left(f\left(\frac{1}{2}\right)\right)\right)\right) = (g \circ f \circ f) \circ f\left(\frac{1}{2}\right).
$$